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Lymphangioleiomyomatosis (LAM) leads to hyperproliferation of
abnormal smooth muscle cells in the lungs, associated with diffuse
pulmonary parenchymal cyst formation andprogressive dyspnea on
exertion. The disease targets women of child-bearing age. Compli-
cations include pneumothoraces and chylous pleural effusions. Ten-
year survival is estimated at 70%, and lung transplantation remains
the only validated treatment. It has been observed that LAM cells
expressmarkers associatedwithmelanocytic differentiation, includ-
ing gp100 and MART-1. Other melanocytic markers have also been
observed. The same proteins are targeted by T cells infiltrating
melanoma tumors aswell as by T cells infiltrating autoimmunevitiligo
skin, and these antigens are regarded as relatively immunogenic.
Consequently, vaccineshavebeendevelopedformelanomatargeting
these and other immunogenic melanocyte differentiation proteins.
Preliminary data showing susceptibility of LAM cells to melanoma-
derived T cells suggest that vaccines targetingmelanosomal antigens
can be successful in treating LAM.
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LYMPHANGIOLEIOMYOMATOSIS
DISEASE DEMOGRAPHICS

Lymphangioleiomyomatosis (LAM) leads to hyperproliferation
of abnormal cells in the lungs, associated with diffuse pulmonary
parenchymal cyst formation and progressive dyspnea on exertion
(1). Patients often develop pneumothoraces and chylous pleural
effusions, correlating in part to the severity of disease (2). Ul-
timately, supplemental oxygen is required (3). Lung transplan-
tation remains the sole validated treatment, with one third of
diagnosed patients transplanted or waitlisted for lung transplan-
tation at any time (4). LAM adheres to the common criteria of
cancer, including tumor formation, uncontrolled and growth-
factor–independent growth of affected cells in culture, and lym-
phatic metastasis, yet the tumors qualify as relatively benign (3).
LAM has been associated with tuberous sclerosis complex (re-
ferred to as TSC-LAM), with more than a third of patients with
TSC having typical cysts noted on computed tomography (5).
The mean age of patients at diagnosis is 36 years (6). The disease
almost exclusively strikes women in the prime of their life,

although sporadic cases of LAM in men have been described,
and a very small percentage of male patients with TSC do de-
velop LAM (5). Progression can be accelerated by pregnancy and
hormonal contraception, suggesting hormonal involvement in
disease pathophysiology, an idea further supported by estrogen
and progesterone receptor expression in affected lungs (7). By its
recognized prevalence of almost one per million, it officially
qualifies as a rare disease, yet a significant cohort of female
patients affected by TSC ultimately develop LAM, suggesting
that LAM remains vastly underdiagnosed (8). This concept is
supported by a recent surge in patients diagnosed with LAM in
Korea, reported after enhanced screening methods (9). LAM is
inheritable, in particular the TSC-associated form. LAM also
carries a strong association with renal angiomyolipoma, and
abdominal pain is among the initial symptoms reported by
patients.

LAM ETIOLOGY

Breakthrough advances were made with the discovery of muta-
tions in TSC1 or TSC2 as underlying causes for LAM (10).
Gene products hamartin and tuberin function as heterodimers;
hence, mutations in either gene define the same disease(s) (11).
The association between both gene products has been mapped
to amino acids 302–430 in hamartin and amino acids 1–418 in
tuberin (12). This association is required to prevent ubiq-
uitination and premature degradation of the TSC2 gene prod-
uct, which eliminates the GAP activity of tuberin (13). Several
different point mutations have been described, primarily in the
C-terminal GAP site or in the regions affecting interactions
among both proteins (13, 14). Mutant tuberin is unable to con-
trol the small GTPase Rheb, and subsequent mTOR activation
accompanied by hyperphosphorylation of S6 ribosomal protein
leads to increased cell growth (15–17). At the same time, Rheb
negatively affects differentiation by inhibiting B-Raf (18). In
TSC-LAM, a disease with autosomal dominant inheritance,
a mutant copy of TSC1 or TSC2 is inherited through the germ-
line (19). Tumors result from inactivation of the second allele of
either gene by loss of heterozygosity or promoter methylation
(20). Patients can thereby lose functional expression of hamar-
tin or tuberin, respectively, in tissue cells, affecting a multitude
of organs that are dependent on the wide variety of binding
partners for either gene product (21). Tuberous sclerosis carries
a prevalence of approximately 1:10,000 (19). Not all patients
with TSC develop LAM, implying that additional mutations
or environmental cues are required for disease expression. Also,
the fact that mutations in genes with products playing such
a central role in cell proliferation and cell growth have less
profound effects than mutations more upstream can likely be
assigned to simultaneous attenuation of Akt (22). Indeed,
mTOR inhibition in mice with mutations in PTEN leads to
much more aggressive tumors (23). The same pathway also
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leads to STAT3 overexpression, implicated in tumor hyperpro-
liferation in LAM (24). In tuberous sclerosis, patients can pres-
ent with neurological disorders, including epilepsy, autism, and
mental retardation, and with tumors in multiple organs, includ-
ing renal angiomyolipomas, ash-leaf shaped depigmentation
patterns of the skin, and pulmonary LAM (25). Lung lesions
leading to TSC-associated or sporadic LAM are often described
as hyperproliferative smooth muscle cells (25). Whether causa-
tive cells originate in the lung or metastasize through the lym-
phatics is a topic of debate (26–28). Support for the metastatic
ability of LAM cells is provided by a demonstrated role for
tuberin in cell motility (29). Metastasis involves estrogen recep-
tor activation followed by overexpression of matrix metallopro-
teinases in LAM (30–34). Further answers may come from
sporadic LAM, where multiorgan involvement in patients is sug-
gestive of metastatic events. Enhanced expression of metastasis-
associated CD44 splice variant 6 in LAM lesions is likewise
supportive of a common origin of disease-associated cells in
LAM and renal lesions (35).

CURRENTLY AVAILABLE TREATMENTS

Preventing further outgrowth of hyperproliferative lesions is
a main objective of LAM treatment, and the discovery of
TSC1 and TSC2 mutations in LAM has opened avenues to
treatment because mTOR activation can be subjected to rapa-
mycin analogs (36). Symptoms did not progress during rapamy-
cin treatment, yet progression resumed after treatment was
halted (37). Although cell proliferation is inhibited and cell size
is reduced, existing tumor cells are not killed by the treatment,
so additional treatment modalities are required for long-term
benefit. Because rapamycin supports cellular autophagy, it has
been proposed that adding inhibitors of this survival-promoting
process will improve the effects of rapamycin (38). Recent find-
ings demonstrating that TSC2 mutations affect not only
mTORC1 but also mTORC2 activity indicate that outcomes
may also improve by combinatorial treatment with simvastatin
(39, 40). Treatment with rapamycin alone can be effective in
a prophylactic setting in patients with LAM after undergoing
lung transplantation (41). The high risk of the operation and the
limited supply of donor organs, however, limit the applicability
of transplantation as an option for LAM. Moreover, rapamycin
has potent immunosuppressive consequences that can be fur-
ther potentiated by additional treatment to prevent tissue rejec-
tion in transplant recipients (42).

LAM DIAGNOSIS

Among the initial symptoms recognized by patients is abdominal
pain and shortness of breath (43). However, the mean time
elapsing between such initial symptoms and official diagnosis
is 8 years (44). Survival is estimated at 70% after 10 ears (44).
A definitive diagnosis generally requires confirmation by a lung
biopsy further analyzed for immunostaining by antibody
HMB45 (human melanoma black 45), reactive with gp100,
a melanosomal glycoprotein otherwise exclusively expressed
in cells of the melanocyte lineage (45). In the future, antibodies
to b-catenin may be used to further support the diagnosis of
LAM (46). Serum VEGF-D levels can serve as a reliable
marker for LAM, and, currently, the combination of a VEGF-D
level . 800 pg/ml along with the finding of lung cysts on CT
establishes the diagnosis of LAM without the need for surgical
lung biopsy (27, 47, 48).

IDENTITY OF LAM CELLS

In human LAM, features of hyperproliferative cells suggest
a smooth muscle origin of LAM lesions (49). However, ex-
pression of smooth muscle actin is not unique to smooth
muscle cells. Lesional LAM cells also frequently express recep-
tors for the female hormones estrogen and progesterone (50).
Some have suggested an endothelial cell origin, supported by
the observation that lesional cells in Tsc1 heterozygote mice
may be of endothelial origin (51). The definitive marker for
LAM cells is recognition by antibody HMB45, supporting
gp100 expression by at least a subset of LAM cells in all patients
and suggesting a melanocytic origin of transformed cells in
LAM (52). Given the current speculation about the origin of
the LAM cells, it is hypothesized that LAM cells originate
from a cancer stem cell, which is able to acquire characteristics
of multiple lineages upon differentiation. Prominent expression
of gp100 inversely correlates with cell proliferation. This sug-
gests that a patient with more aggressive disease would exhibit
fewer LAM cells expressing gp100 because rapidly proliferating
cells do not react with HMB-45 (53). Our own studies suggest
that gp100 expression is antiapoptotic because cells trans-
duced to express gp100 also overexpress Bcl-2 (54). Evidence
for a more extensive melanocytic differentiation program with-
in LAM cells is provided by expression of MART-1 and
CD63 (tetraspanin) (53). LAM tumor cells can also express
melanoma-associated antigens and tyrosinase-related proteins

Figure 1. A central role for Rheb in dysregulating

cell size and differentiation profile in lymphangio-

leiomyomatosis LAM? When TSC1 or TSC2 are mu-
tated, the tuberous sclerosis complex (TSC) is

incapable of inhibiting Rheb, which leads to activa-

tion of mTORC, supporting an increase in cell size.
Uninhibited Rheb simultaneously leads to inhibition

of wild-type and mutant Braf. At least in the case

of mutant Braf, this releases repression of Mitf, in-

creasing CDK expression and cell cycling as well
as expression of melanoma-associated antigens in

melanosome-like organelles. Unknown factors re-

main, yet these conditions likely contribute to ab-

errant expression of melanoma antigens in LAM.
This profile can render LAM tumor cells susceptible

to vaccines designed to target malignant melanoma.
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(TRP)-1 and TRP-2, and detection of TRP-1 may be a more
reliable indicator of LAM than gp100 (55). By contrast, melanin
formation is absent, and antibodies to the associated enzyme
tyrosinase were not reactive with LAM tissue or angiomyolipoma
of the lung in a patient with TSC (55, 56). Ultrastructural studies
confirm the presence of premelanosomes in the absence of melanin
deposition (55).

A LINK WITH MELANOMA

Melanoma cells are not known to carry mutations in TSC1 or
TSC2, although mTOR activation is a common feature and
mTOR inhibition by rapamycin combined with PI3 kinase
inhibitors has met with therapeutic success in animal models
of melanoma (57, 58). In melanoma, malignancy is associated
with early mutations in BRAF, the gene product of which is
suppressed by Rheb (59). Although mutations affecting the
tuberin/hamartin complex lead to increased Rheb activity and
therefore to elevated mTORC activity and cell growth, in-
creased Rheb also inhibits BRAF-induced differentiation (Fig-
ure 1). However, only oncogenic BRAF can (negatively)
regulate Mitf expression (60). Mitf is required for melanocytic
differentiation and is responsible for the expression of gp100
and MART-1 (61). Thus, it may be predicted that BRAF muta-
tions, frequently observed in melanoma, are uncommon in
LAM (62). In melanoma, mutant BRAF-induced suppression
of Mitf is countered by a requirement for Mitf to induce expres-
sion of CDKs, including CDK2, which shares a promoter with
gp100 (54, 60). The observation that TORC1 signaling affects
melanosome formation may shed light on the underlying mech-
anism driving melanosomal antigen expression in LAM (63). A
hallmark of malignantly transformed melanocytes in melanoma
is their continued expression of differentiation antigens gp100
and MART-1, which are among the most immunogenic tumor-
associated antigens known. In fact, MART-1 stands for Mela-
noma Antigen Recognized by T cells, and the majority of
T cells infiltrating melanoma tumors are reactive with MART-
1and gp100 (64). Other melanocyte differentiation antigens
expressed in LAM are also immunogenic, including TRP-1
and TRP-2 (64). Immunogenic proteins expressed by melanoma
cells also include gene products associated with malignant trans-
formation, such as the MAGE family of proteins, and GD3 (65).
What makes melanoma such a uniquely immunogenic tumor is
the melanosome. This organelle carries physiologic properties
otherwise associated with lysosomes, including processing of
antigens to be presented in the context of MHC class II (66).
Because primary melanocytes only express MHC class II mol-
ecules under pathologic conditions, the immune system may be
tolerant to melanosomal peptides due to ignorance (67). In the
autoimmune disease and in malignant melanoma, however,
melanocytes or their malignant counterpart, the melanoma cell,
do express class II molecules; this may explain why tolerance to
melanosomal self-proteins is broken.

IMMUNOTHERAPY TARGETING
MELANOMA-ASSOCIATED ANTIGENS

Rare observations of spontaneous remissions among patients
with melanoma have sparked interest in the underlying mecha-
nism. Cells mediating cytotoxicity toward tumor cells were iso-
lated and grown in bulk and then adoptively transferred back to
patients (68). Original strategies have since been refined, boost-
ing immune responses with vaccines containing melanosomal
target antigens in the form of DNA, RNA, protein, or peptides
in natural or modified format as presented in the context of
HLA, involving dendritic cells (69). Further immunotherapeutic

developments include T-cell receptor transgenic T cells, anti-
bodies and anti-idiotype antibodies, and even chimeric antigen
receptors combining high-affinity antibody paratopes with
T-cell signaling advantages (70). Cytokines, costimulatory mol-
ecules, heat shock proteins, and other adjuvants as well as com-
binations with cytostatic drugs are included in current vaccine
strategies to target melanoma (71, 72). Tregs have since been
recognized as major impediments to effective tumor targeting,
and antibodies to CD25 are used to deplete Tregs (73). Whereas
the window of opportunity for successful treatment of advanced
stage melanoma remains limited, similar strategies may be ap-
plied with more success in less aggressive LAM tumors express-
ing the same target molecules. This concept is strongly supported
by the observation that LAM cells cultured from affected lung
tissue were susceptible to melanoma-derived cytotoxic T cells to
an extent well beyond that predicted based on detectable gp100
expression (55). The latter observation supports the concept that,
in cells lacking mature melanosomes, molecules otherwise des-
tined for the melanosome are driven to the endosomal compart-
ment to favor antigen processing and presentation (74). Despite
elevated expression of the T-cell costimulatory molecule B7H3,
the expression of immunogenic melanoma-associated antigens in
LAM is not accompanied by indications of enhanced T-cell infil-
tration of tumor tissue (75). Thus, intrinsic immunosurveillance
of LAM tumors is inadequate to keep slow tumor growth in
check. At the same time, infiltration by increased numbers of
tumor-promoting macrophages has been observed in TSC lesions
and LAM lung (55, 76). Taken together, these findings suggest
that existing and enhanced vaccines developed to treat malignant
melanoma may be suitable for treating LAM.
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